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Abstract 

Progress in theoretical approaches to the refinement 
of structure factors and structure determination by 
electron diffraction is briefly reviewed. A strategy 
based on the use of two-beam-like features in conver- 
gent-beam electron diffraction (CBED) patterns is 
advocated, based on an effective potential and a 
reduced excitation error. Model calculations suggest 
inversion of the Bethe potentials to be useful. New 
experimental measurements for CBED rocking 
curves in GaAs are reported and these give the refined 
values V(200)=0.432 (9), V(400)=4.53 (4) V at 
90 K, including Debye-Waller factor. The results 
from the inverse Bethe potential method are in excel- 
lent agreement with full many-beam calculations. 
These experimental values are compared with the 
results of recent pseudopotential total-energy calcula- 
tions. 

1. Introduction 

It is now almost forty years since the first attempts 
at crystal structure refinement by electron diffraction 
(Cowley, 1953; Vainshtein & Pinsker, 1950; MacGil- 
lavry, 1940). The early researchers were quick to 
realize certain advantages offered by electron scatter- 
ing, e.g. the high sensitivity of low-order electron 
structure factor to charge transfer effects in crystals 
[for a discussion of the effects of ionicity and bonding 
on electron diffraction intensities, see Cowley (1953)]. 
The intervening period has seen vast advances in 
instrumentation, including the development of brigh- 
ter electron sources, probe-forming optics for conver- 
gent-beam diffraction (CBED) and improved vacuum 
conditons for reduced contamination. The use of the 
new parallel detector systems with large (212 ) dynamic 
range, based on single-crystal screens bonded to 
cooled charge-coupled devices (Spence & Zuo, 1988), 
offers promise for greatly improved quantitative data 
collection. The developments in instrumentation have 
been exploited in different measurement techniques 
relating to structure factor measurement, e.g. the use 
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of CBED fringes (Shishido & Tanaka, 1976; Good- 
man, 1976; Voss, Lehmpfuhl & Smith, 1980), the 
intersecting Kikuchi line (IKL) method (Taft0 & 
Gj0nnes, 1985), higher-order Laue zone (HOLZ) 
intensities (Vincent, Bird & Steeds, 1984) and critical- 
voltage CBED methods (Moodie, Humphreys, 
Imeson & Sellar 1978). 

On the theoretical side progress appears to have 
been slower, despite the fact that the theory of 
dynamical Bragg diffraction of kilovolt electrons by 
a known crystal structure has been well understood 
for many years. The remaining problems seem to be 
connected more with the practical application of the 
theory to the determination of unknown structures 
than with further refinement of basic theory. This still 
presents a formidable task. Despite much effort using 
various types of diffraction patterns and despite the 
success in the accurate determination of a few struc- 
ture factors for very simple structures, we still lack 
reliable procedures for structure determination by 
electrons to acceptable accuracy. There is as yet no 
obvious way to extract from the complete scattering 
pattern a set of well defined measurable quantities 
which can be introduced into a standard procedure 
for structure determination comparable to the use of 
integrated intensities in X-ray or neutron crystal- 
lography. 

The aim is therefore to search for such quantities, 
which should be obtained from the CBED pattern 
and be related to structure factors. The use of the 
CBED method is essential. Experimental intensity in 
the form of two-dimensional rocking curves lg(kx, ky) 
is sampled from an area small enough to assume the 
crystal to be perfect and the orientation and thickness 
to be constant within the scattering volume. Hence 
the CBED intensities may be compared directly with 
theoretical calculations, in contrast with the intensity 
of the reflections in the small-angle diffraction (SAD) 
pattern. Typical CBED patterns (Figs. 1 and 6) are 
seen to contain a vast amount of details, which depend 
upon thickness, lattice constants and wavelength as 
well as several structure parameters in a complicated 
way. However, inspection of such patterns and of 
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theoretical calculations reveal that much of the detail 
within the CBED disks (and in the Kikuchi pattern) 
has qualitative appearance similar to the two-beam 
case, even when many interacting beams are evident 
in the pattern. This applies particularly to the intensity 
profiles normal to the Kikuchi or Kossel lines. These 
profiles may tentatively be represented by the well 
known two-beam intensity expression 

Ig( kx, ky)= { U2/[ ( ksg) 2 + U~]} 

xsin 2 {(~z/k)[(ksg)2+ U2] 1/2} (1) 

if an 'effective Fourier potential', U~ ff, is substituted 
for Ug. The maximum may be shifted from the Bragg 
position s X = O; in this case a reduced excitation error 

Sg' = sg - sg° should be substituted for Sg. These magni- 
o will usually vary along the Kikuchi tudes, U err and Sg, 

or Kossel line segments to which they relate, reflecting 
varying effects of simultaneously excited reflections. 

There is considerable experience to support this 
suggestion: an effective or dynamical potential was 
proposed by Bethe (1928). Contrast details in Kikuchi 
patterns have been analysed in terms of Bloch-wave 
pairs, for example by H0ier (1972), who pointed out 
that the line position coincides with the position of 
minimum distance or 'gap' between Bloch-wave 
eigenvalues (Anpassungen) while the contrast (width) 
of the line is determined by the magnitude of the gap. 
The treatment of HOLZ intensities in terms of Bloch- 
wave hybridization (Buxton, 1976) implies a similar 
idea. 

It is suggested in this paper that many intensity 
features in CBED patterns can indeed be represented 
by such an expression, that the parameters U af (and 
s °) should be related to Bloch-wave pairs (i,j), that 
they can be extracted by different kinds of measure- 
ments, relating to positions of lines, to fringe patterns 
or to an integrated intensity, and that they can be 
related to structure factors by relatively simple 
expressions. 

Our aim is to test the validity of such expressions 
for the effective potential (or its equivalent, the gap 
at the dispersion surface). Numerical calculations are 
presented for systematic rows in GaAs. Experimental 
intensity profiles for reflections along the [h00] row 
of GaAs are analysed and the structure factors for 
400 and 200 are refined. 

(a) 
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Fig. 1. (a) Experimental convergent-beam pattern recorded at 
120 kV from GaAs at 90 K near the [035] zone axis showing the 
[h00] systematic row and accidental reflections. (b) Schematic 
diagram indicating the reflections included in the refinement of 
structure factors. 

2. General theory and approximations 

We commence with the familiar Bloch-wave solution 
for the Schr6dinger equation (Reimer, 1984), 

[K2-(k+g)2]C~+Y '. U~_hCh=O, (2) 
h 

where K 2 = k 2 + U o = 2 m E / h E + 2 m e V o / h 2 ,  with E 
the accelerating voltage and Ug the Fourier 
coefficients of the crystal potential. For an incident 
electron beam near the surface normal this equation 
simplifies to 

2 k ( s g - y ) C g  + ~ Ug_hC h =0,  (2a) 
h~g 

where ~g Cg exp [27ri(k+g)r] are the Bloch waves 
with corresponding eigenvalues % and where the 
excitation error sg is measured along the surface 
normal. 

In the general case, i.e. with HOLZ reflections 
included (as in the refinement of experimental 
intensities presented below) or with an inclined sur- 
face, the 'zero-layer' form (2a) may be retained 
through a renormalization (Niehrs & Wagner, 1955; 
Gj0nnes & Gj0nnes, 1985). Let 

k =  ko+ yn 
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where n is a unit vector along the surface normal. 
Using this equation in (2) and redefining the Bloch- 
wave coefficients 

B g = ( l  + g,,/ K,,)l/2Cg 

we obtain 

- B g ( 2 k . g + g  z) 

1 + g , / K , ,  h•# 
g nh Ug-h 

+ (l+g,,/K.)U=(l+h./K.),/2 

= 2K,,'yBg. (3) 

Here g, = g . n  and K, =K.n .  Equation (3) has been 
solved numerically to obtain the refined values of 
GaAs structure factors which include HOLZ effects. 
Absorption may be included through an additional 
imaginary (non-Hermitian) potential, usually intro- 
duced as a perturbation, i.e. by an imaginary addition 
to the eigenvalues, y. 

Numerical solution of the eigenvalue equation (3) 
may work well in a final refinement or when the 
structure is known apart from one or two parameters. 
But for application to more general cases, it is desir- 
able to have procedures for approximate solutions in 
terms of effective Fourier potentials or structure fac- 
tors. We are then especially interested in features 
where two Bloch waves, i and j, dominate the 
expression for CBED contrast: 

lg(kx, k y ) = Y , ~  ' ' * J * j Co(C~) (Co) c~ 
i j 

x e x p [ - 2 7 r ( y i - y J ) z ] .  (4) 

In many such cases one structure factor (Ug) will be 
the main contribution to the gap, ( y ~ - y  J), but this 
is not essential for the further discussion. Let us here 
outline briefly three ways of including the multiple- 
beam effects on 'two-Bloch-wave features': (i) beam 
reduction in symmetrical cases; (ii) perturbation 
expression for scattering between Bloch waves; (iii) 
the Bethe potentials. 

In beam reduction the symmetry relations between 
Bloch-wave amplitudes at special points in the 
Brillouin zone are exploited. Several cases were 
treated by Fukuhara (1966). A general discussion of 
the planar point symmetry in symmorphic groups has 
been given by Taft~ (1982). The dispersion surface 
and thickness-averaged intensity I s are shown for two 
useful cases in Fig. 2. 

Perturbation expressions for scattering between 
Bloch waves (interband scattering) have been applied 
to various problems in electron diffraction, e.g. to 
inelastic and other forms of diffuse scattering by 
Howie (1963), Gjglnnes (1966) and others. Buxton 
(1976) treated HOLZ line intensities by essentially 
similar expressions. We shall here consider briefly 
scattering between two dense rows in a projection. 
In the usual forward scattering approximation this 
can be pictured as a sequence of scattering processes 
taking place at different levels in the object. The 

incident wave is scattered along the first row, i.e. into 
the beams ko+ nh. At a level z these waves are scat- 
tered through the potentials Ug+,,,h into the other row, 
i.e. the beams k o + g +  nh, along which further scatter- 
ing takes place. The amplitude for the beam g in the 
second row can now be written as 

A g ( z ) = i ~ , Y .  S g g , ( Z - - z t )  U g , h S h o ( Z t ) d z t  (5) 
O h g "  

where the integration can be performed by expanding 
the scattering matrices, S, in Bloch waves, viz 

Ag(z) EEEE(c'.)*c' , , *  = g, U g , h C h ( C o )  
h g' i j 

exp (i'yiz) - exp (iyJz) 
x (Sa) 

i ( 3 / -  y J) 

where the (i, j )  term may be seen as a 'quasikinemati- 
car  expression for scattering between the Bloch waves 
i and j, with maximum appearing when y~= y J, i.e. 
for a particular diffraction condition which can be 
measured - as in the IKL method. The strength of the 
interaction is given by the matrix element ( i l U  l J )=  
U eft. The z-dependent term 

exp ( i y i z ) - e x p  ( iyJz) 
i (r  ~ -  r J) 

is a function of the difference ( y ~ - y  J) only, i.e. the 
distance between the two branches. In the kinematic 
approximation this depends on an excitation error, 
s. In the two-beam case 

i __ , y j  "y = [ s 2 + ( U / k ) 2 ]  1/2 and y i + y J = s .  

k s 9  . 

/ u. ~ I 

(a) 

(b) 

Fig. 2. (a) Typical four-beam dispersion surface for a symmetrical 
separable case (b) as a function of kr., with the gap values 
indicated. 
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An approximation beyond the kinematic form in (5a) 
is obtained by substituting the equivalent two-beam- 
like expression based on U ~rr for the z-dependent 
term in (5a), i.e. 

U eff 

[ ( U ~ r r l 2 k )  2 + (s l2)2]  '/~ 

x sin {[ ( u~rf/2k )2 + ( s / 2 )211/2 z} exp ( i s / 2) 

is substituted for 

exp ( i7~z)-exp (iyJz) 

in (5a). In this way we may also define an integrated 
intensity similar to the Blackman (1939) formula for 
the pure two-beam case. 

The Bethe (1928) potential is a perturbation 
approach directly on the eigenvalue. This was intro- 
duced in order to include the effect of weak beams 
on the two strong beams in the form 

U~ f f=  U g -  ~] UhUg_h/2ksg. (6) 
h # g  

Despite certain limitations at small thicknesses 
(Gjannes, 1962) this approximation works well in 
many cases. It is very useful in the treatment of the 
systematic row, which we now consider in more detail, 
first through model calculations. 

3. Calculations for the systematic row 

Numerical calculations were performed for system- 
atic rows in several substances, with two main objec- 
tives, viz to test the representation of intensity profiles 
as a function of the diffraction condition sg by two- 
beam-like expressions and to test approximations for 
U elf. The dynamical n-beam calculations were per- 
formed for a wide range of incident-beam directions. 
The results reported here are for [h00] and [hhh] 
rows in GaAs. A sufficient number, typically about 
20, of symmetrically placed beams in the systematic 
row were used. The results are presented in Figs. 3 
to 5 as dispersion surfaces, rocking curves at selected 
thicknesses and as thickness averages for the different 
reflections. The two-Bloch-wave character is illus- 
trated by the magnitude I c~l 2 + I C~,l 2. The calculations 
were performed without absorption, since they were 
aimed at the form of the solution and its representa- 
tion by the gap, U err, as parameter. 

We have drawn the dispersion surface (Figs. 3, 4 
and 5) with kx as the abscissa, i.e. Bloch-wave eigen- 
values and excitation errors are shown as functions 
of the x component of the wave vector k for the 
incident electrons. The motivation for this representa- 
tion (rather than the one found in most text books) 
is that the x and y components of k are also the 
coordinates within the CBED disks, and can thus be 
measured directly in the diffraction pattern. Disper- 

sion surfaces in Figs. 3, 4 and 5 thus give the variation 
of yJ and sg as traced across the CBED disks (perpen- 
dicular to the K lines) for different orientations. 

The dispersion surface is a useful indication of the 
two-Bloch-wave character. The [h00] row in GaAs 
(Fig. 3a) is a good example. The gaps are well separ- 
ated, with a hyperbolic shape of the two branches 
around the Brillouin zone boundaries. For the [hhh] 
row (Fig. 3b) there is more overlap between neigh- 
bouring gaps, and here the two-Bloch-wave descrip- 
tion is clearly poorer. This is reflected in the magni- 
tude I C~,12 + I Col 2, i.e. the fraction of the total intensity 
included in the two branches forming the gap. Figs. 
3(c) and (d) show this for the different gaps along 
the two rows [h00] and [hhh]. 

A more detailed test of the two-Bloch-wave rep- 
resentation is provided by the comparisons in Fig. 4. 

(a) 

.... ~0~ ~ : ~ o  
(b) 

0.1 "~3 

~c) 

~o~ ,~__ 
~ ~" 2,3 o.5  
(d) 

Fig. 3. Bloch-wave calculations for the [h00] and [hhh] systematic 
rows in GaAs at 120 kV. (a) Calculated dispersion surface for 
the [h00] systematic row. (b) Intensity in Bloch-wave pairs in 
the [h00] row. (c) Calculated dispersion surface for the [hhh] 
systematic row. (d) Intensity in Bloch-wave pairs in the [hhh] 
r o w .  
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Here the shape of  the two branches forming the gap 
and their separat ion k(y  ~- y J) as a function of  the 
beam direction, given by k~, are compared  with the 
two-beam expressions using either the structure fac- 
tors U~ or the calculated gap U~ ff as parameter .  
Included in these figures are also the thickness- 
averaged rocking curves. 

In a fur ther  set of  curves (Fig. 5) exact  calculat ions 
of  [h00] rocking curves at two thicknesses, 100 and 
200 nm, are compared  with s tandard  two-beam calcu- 
lations and with two-beam expressions using the exact 
value for the gap. The compar isons  show that the 

introduct ion of  the gap as an effective potential  
always leads to a marked  improvement  over the two- 
beam-type  expression. The two-Bloch-wave character  
varies: the reflections along the [h00] row are much 
better represented by two Bloch waves than those 
along the more dense [hhh] row; note the very good 
fit for 400 and 800. 

The value of  the gap at the dispersion surface,  
k ( y  i -  y J), or U err, may differ considerably from the 
two-beam value. Several approximat ions  may  be used 
to calculate U err. The Bethe formula  was found to 
give a good fit in the [h00] row (see Table 1). For 

(a) 

J 

04  ~ s f f  
~ s S 

(b) 

01:t 

"/d9 zoL~ 

(c) 

(d) (e) (f)  

° t 0 /L_ °I (12 0 2  0 2  j 

r 
(g) (h) (i) 

Fig. 4. Comparison between full n-beam calculations (solid curve), two-beam calculations (dashed curves) and two-Bloch-wave 
calculations (dotted curves) for the [h00] systematic row in GaAs at 120 kV. (a), (b) and (c) Dispersion surface near the Bragg 
condition for 200, 400 and 800 respectively. (d), (e) and (f) Distance between the two branches at the dispersion surface near the 
gap at the Bragg condition for 200, 400 and 800. (g), (h) and (i) Thickness-averaged rocking curves for 200, 400 and 800. 

0/, r )m 

5 0 5  
O2 

. . . . . . . .  . °, ,. __ _ , 

O¢~ ,-. t~z~ ',' ", 

2 0 0  4 0 0  8 0 0  

Fig. 5. Intensity profiles in the [hO0] row in GaAs at 120 kV at 100 and 200 nm. Comparison between full n-beam calculations (solid 
curve), two-beam calculations (dashed curves) and two-Bloch-wave calculations (dotted curves). 
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Table 1. Structure factors, gaps at the dispersion sur- 
face and approximations for GaAs, with the systematic 
row [h00] at 120 kV (structure factors and gaps are 

given in /~-2) 

h k ! Ug k ( y i - y  j) Ug ~the Ug* 

2 0 0 0.00450 0.00595 0.00600 0.00483 
4 0 0 0.04104 0.04205 0.04221 0-04131 
6 0 0 0.00031 0.00084 0.00087 0.00042 
8 0 0 0-01548 0-01237 0.01251 0.01539 

10 0 0 0.00023 0"00005 0.00000 0-00030 
12 0 0 0-00640 0"00530 0.00526 0.00645 
14 0 0 0.00013 0.00008 0"00006 0"00015 
16 0 0 0"00269 0"00228 0"00226 0.00271 
20 0 0 0"00114 0.00097 0.00098 0"00113 
24 0 0 0.00047 0.00041 0.00046 0.00048 

U s is the structure factor calculated from the known structure of GaAs 
and Doyle-Turner scattering factors for electrons. 

k ( ¢  - ys)mi . is the corresponding gap at the dispersion surface, i.e. the 
minimum distance between Bloch waves i and j near s~ = 0. 

U Bethe = Ug--~"h~g UhUg-h/2kSh is  t h e  B e t h e  potential. 
Ug* is the approximation to U~ derived from the inverse Bethe formula 

(see Appendix). 

the [hhh] row the Bethe approximation gave a much 
poorer f i t - a s  was expected from the dispersion 
surface. 

The good fit to exact calculations using the Bethe 
formula suggested that a reverse procedure be tried: 
we may obtain the Fourier potentials from the gaps 
by taking, for example, the largest gap as a starting 
value and correcting the gaps through an iteration 
procedure. As a first step a computer program for 
deriving the potentials from the gaps was written and 
applied to the values for the gaps previously obtained 
from the many-beam calculations listed in Table 1. 
This procedure, which is outlined in the Appendix, 
was found to converge and produced the values listed 
in the last column of Table 1. The procedure was 
tried in a number of cases, and was found to work 
well when there is a marked two-Bloch-wave 
character. 

The next step in these computational exercises was 
to try methods to extract the gap values from intensity 
profiles. The method must be adapted to gaps of 
different sizes: For large gaps, when there is a well 
developed fringe pattern, procedures similar to those 
used by Goodman & Lehmpfuhl (1967) and in later 
studies can be used, i.e. determination of thickness 
from the outer part of the fringe pattern followed by 
curve fitting in the central part in order to determine 
the gap. For small gaps an integrated intensity of the 
profile across the Kossel line must be determined and 
normalized to the profile of a larger gap. For thick- 
nesses small relative to the gap this integrated 
intensity will be proportional to the square of the 
gap, i.e. to (Uerf) 2. At greater thickness this kinemati- 
cal integral should be replaced by the expression 
introduced by Blackman (1939) for the integrated 
intensity across a two-beam profile [see equation 
(A9)]. 

Table 2. Test of  the application of the two-beam 
description to determination of structure factors 

Determination of approximations to U2oo, U4oo and /-/8o0, and the corre- 
sponding gaps, in GaAs from simulated intensity, ~rofiles (n-beam calcula- 
tions) (structure factors and gaps measured in A -  ). 

Approximation 
to U s derived 

Gap at the from the 
dispersion Approximation inverse Bethe 

surface to the gap at formula and the 
Structure (from n-beam the dispersion approximate 

g factors calculation) surface gaps 

2 0 0 0.00507 0.00689 0.00615* 0-00447 
4 0 0 0.04625 0.04748 0 .04746t  0.04601 
8 0 0 0.01745 0.01347 0.01314~t 0.01760 

* From the ratio between the integrated.lintensity in 200 and 400. 
t From least-squares fit of the intensity profile to a two-beam expression with the 

thickness and the effective structure factor as parameters. 
~: As * but with known thickness. 

Such a procedure was tried on the [h00] row. 
Starting from the computed intensity profiles at a 
given thickness (200 nm), the calculations were run 
backwards: from the 400 profile the thickness and 
gap were obtained, and similarly for the 800, whereas 
the 200 gap was derived from the integrated intensity. 
These values were then introduced in the iteration 
scheme based on the Bethe potential formula. Results 
are summarized in Table 2. 

4. Experimental 

Experimental measurements were made of the 200 
and 400 rocking curves in CBED patterns from thin 
(110) samples of GaAs prepared by mechanical dimp- 
ling and ion milling. By comparing these experimental 
CBED intensity profiles with many-beam Bloch-wave 
computations, values of the structure factors have 
been refined. Through application of the procedures 
explained in the previous section, the accuracy and 
utility of the Bethe series inversion and the two-beam 
form could also be tested on experimental curves. 

Energy filtered intensity data were collected in a 
Philips EM 400T electron microscope through an 
energy loss spectrometer (Gatan, model 607) using a 
deflection system under computer ( P D P l l / 2 3 )  con- 
trol to scan the pattern over a 1 mm slit. Fig. 6 com- 
pares the measured energy-filtered intensity across 
000,200 and 400 with the observed diffraction pattern. 
For a camera length of 460 cm this corresponds to 
an angular resolution of 1.8% of the 002 diffraction 
angle. An electron probe size of 400 nm was used at 
the accelerating voltage 120+0-5 kV as determined 
by the Kikuchi l ine/HOLZ method (Fitzgerald & 
Johnson, 1984). The range of thickness under the 
probe was confirmed to be very small by observation 
of Pendell6sung fringes. The orientation near [035] 
(see Fig. 1) was chosen so as to minimize the excita- 
tion of reflections other than the h00 systematics; 
however, our calculations were not restricted to these. 
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The choice of camera length, detection aperture, spot 
size (source intensity), number of scan points (150), 
dwell time (0-8 s) and probe size were determined by 
the required compromise between sample stability, 
uniformity of thickness, electron emission stability 
and the required signal-to-noise ratio. The sample 
was cooled to 90 K in order to minimize phonon 
scattering and reduce contamination. 

The adjustable parameters in our refinement 
included crystal thickness, the 200 and 400 structure 
factors, the specimen orientation (i.e. the effect of 
non-systematic and HOLZ reflections), accelerating 
voltage and the absorption coefficients. The general 
refinement strategy was as follows: (i) The accelerat- 
ing voltage and orientation were determined from the 
position of HOLZ lines crossing the central disk and 
the outer HOLZ reflections. (ii) The absorption 
coefficients were determined by matching the asym- 
metry of the 000 rocking curve. (iii) The specimen 
thickness was determined by matching the outer frin- 
ges in the CBED disks accurately. (iv) The structure 
factors of 200 and 400 were then derived essentially 
from the central portion of the CBED disk (near the 
Bragg condition); in particular the relative heights of 

20 
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Fig. 6. (a) CBED pattern from GaAs recorded at 120 kV and 92 K 
showing the line along which the energy-filtered intensity 
measurements in (b) were taken. (b) Experimental energy- 
filtered elastic scattering intensity along the line shown in (a). 
Abscissa calibration: at A, (kx, ky, k=)= (2-75, -1-175, 0-705) 
and at B, (kx, k r, k~)=(0.55, -1.175, 0.705) in fractional 
reciprocal-lattice units. 

0.50 

0.00 

I ( - 4 , 0 , 0 )  .vs. TILT 

(a) 

Fig. 7. (a), (b) and (c) Comparison of theoretical (continuous 
line) and experimental (crosses) rocking curves for the 000, 200 
and 400 CBED disks respectively in GaAs at 120 kV. (d) The 
best fit of an effective potential to experimental data (crosses) 
and the full dynamical calculation (continuous line). 
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Table 3. Structure factors in GaAs determined by electron diffraction, comparison with theoretical values and 
results from X-ray diffraction 

Method  Temperature  (K) g --- 200 g = 400 

ev e x~  XF,* ev, XF, 

Single-crystal X-ray room 141.9 (4) 
(Matsushita & Hayashi, 1977) temp. 

Powder X-ray 293 -5.2 138.7 (1) 
(Uno, Okano & Yukino, 1970) 

Convergent-beam electron diffraction 90 0-432 (9) 5-76 5.80 4.53 (4) 159.0 (10) 
(this work) 

Doyle & Turner (1968) (theory) 0.489* 5.47* 5.56 4.55* 158-6" 
Nielsen & Martin (1985) (theory) 5.92 

* At 90 K using Debye-Waller factor for X-ray conversion from Reid (1983). 
t Debye-Waller factor excluded, using data from Reid (1983), average value assumed for Ga and As for experimental data. 
* Corrected for dispersion, see Nielsen & Martin (1985). No Debye-Waller factor. 

xFt 

165.2, 

163.8 

163-4 
160-4 

the inner subsidiary maxima were used. All other 
structure factors were taken from the Doyle & Turner 
(1968) X-ray scattering factors for neutral atoms, with 
the usual expression for the electron scattering factor: 

fel( s) = ( me2/ 2h2)( Z -  fx)s2 

where s =(sin 0)/A and the equation is written in 
CGS units. Debye-Waller factors at 90 K were taken 
from Reid (1983). 

A Bloch-wave eigenvalue calculation based on (3) 
using a complex non-Hermitian structure matrix rep- 
resenting non-centrosymmetrical GaAs structure with 
absorption included was first tried and found to agree 
very closely with the usual perturbation treatment of 
absorption (Reimer, 1984) which was used in further 
calculations. The refinement was carried out in several 
steps. An initial refinement based on ten systematic 
beams was used to obtain starting values for the 
adjustable parameter listed above. The result of the 
final refinement shown in Fig. 7 included all the 45 
beams appearing with appreciable intensity in the 
pattern of Fig. 1 (including HOLZ reflections). The 
dashed line shows the best fit obtained using the 
two-beam expressions with V(400)= 4-86 V. Table 3 
summarizes the results and compares them with theo- 
retical and experimental X-ray structure factors for 
GaAs. The experimental values thus obtained include 
the Debye-Waller factor. For comparison with theo- 
retical values, a temperature factor has to be assumed 
(see Nielsen & Martin, 1985). 

A careful analysis of errors has been made, using 
computational trials, the Bethe potential expression 
[(6)] and differentiation of (1). The results may be 
summarized thus: (i) The error of 0.5% in thickness 
determination of 880 A results in a similar error in 
the refined value of Vg. (ii) We find that a 10% error 
in the assumed high-order structure factors results in 
a 0.1% error in V(400). (iii) The error of 0.5% in 
accelerating voltage results in a 0.25% error in 
V(400). (iv) The error of alSout 1% in excitation error 
determination has a negligible effect on the disk 
intensities provided they are not crossed by HOLZ 

lines in the region of interest. (v) The main effects of 
absorption are an overall attenuation of the curves 
for g = 0 ;  a 5% error in estimated absorption 
coefficients produced a negligible effect on the struc- 
ture factors. (vi) Variations in the Debye-Waller fac- 
tor assumed for the high-order reflections have only 
a small effect. (vii) The most important experimental 
source of error results from the convolution of the 
experimental data with the detector slit. This leads 
to an error of about 0.5% in the measured values of 
Vg. In summary, combining these effects we find that 
the error in our measurements of V(400) is about 1% 
while that in V(200) is about 2%. 

The experimentally obtained 200 and 400 structure 
factors may be used to determine the distribution of 
potential or charge in the crystal. In particular, the 
deviation from the electron distribution correspond- 
ing to free atoms can be studied and compared with 
theoretical calculations of band structure. From Table 
3 the experimental 200 structure factor is seen to differ 
significantly from the theoretical value assuming 
neutral atoms. On the other hand the deviation of the 
400 result from the free-atom value is quite small. 

5. Discussion and concluding remarks 

The intensity variations within CBED disks offer 
several possibilities for determination of structure 
factors. Many features, e.g. intensity profiles across 
CBED fringes, Kikuchi or Kossel lines, can be 
measured with high accuracy-and  often described 
to a fair approximation by two dominating Bloch 
waves. We have applied this description to systematic 
rows in simple structures. The [h00] and [hhh] rows 
in GaAs are shown as examples. Theoretical calcula- 
tions as well as the treatment of experimental intensity 
curves in the [h00] row show that the two-Bloch-wave 
description with an effective potential is useful and 
can be accurate to a few percent. The intensity in the 
strong reflections can be approximated by a two-beam 
expression for a wide range of orientations around 
their Bragg condition. For the weaker superstructure 
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reflections (200 etc.) the two-Bloch-wave description 
may be valid only in a narrow region near the Bragg 
condition. However, since their intensity is also 
confined to this region, the two-beam-like expressions 
can be applied to the weak reflections as well. Exact 
calculations may thus be reserved for the refinement 
of structure factors. 

The [hhh] row shows much less pronounced two- 
Bloch-wave behaviour for the inner reflections, where 
strong coupling between neighbouring reflections 
leads to three-beam-like conditions. However, as we 
go further out along the [hhh] row where the Ewald 
sphere is steeper, we again find two-beam-like 
character. 

The Bethe potential is found to be a good approxi- 
mation to U af (or the gap at the dispersion surface), 
especially when the other beams are weak in the sense 
that Uh/2kSh is small. An iteration procedure for 
determination of the structure factors from the 
observed gaps has been developed (Appendix) and 
applied to theoretical and experimental rocking 
curves for reflections in a systematic row. In principle 
this procedure can be applied to an unknown 
structure. 

The various approximations can be evaluated from 
our experimental results. The direct application of 
the two-beam form gives the experimentally deter- 
mined V(400)~rr=4.86V. When introduced in the 
Bethe series for the systematics case, this gives 
V'(400) = 4.74 V - which agrees remarkably well with 
the result of a many-beam systematic calculation, 
viz. V(400)=4.75V.  Our full three-dimensional 
refinement including all 45 beams indicated in 
Fig. l(b) gives V(200)=0.432(9)  and V(400)= 
4.53 (4) V. When the electron diffraction determina- 
tion of structure factors is converted into X-ray values, 
the relative accuracy is improved considerably for the 
inner reflections: the error limits of 2 and 1% for 
V(200) and V(400) respectively correspond to 0.7 
and 0.5% in the X-ray scattering factors. 

The inner reflections are of particular interest in 
connection with theoretical calculations of electronic 
structure. In recent years pseudopotential methods 
have been applied to calculations of ground-state 
properties of crystals. By adding a core contribution, 
this method gives values of X-ray structure factors 
from first-principle calculations containing no adjust- 
able parameters other than atomic number and crystal 
structure (e.g. Yin & Cohen, 1982). The results of 
such calculations can therefore be tested by com- 
parison with our experimental values. The structure 
factors calculated by Nielsen & Martin (1985) are in 
fair agreement with the values reported here. As seen 
from Table 3, the electron transfer to As, as given by 
/-]200, is slightly less than their calculations. Our 
experimental 400 value is close to the neutral-atom 
value, indicating much smaller bonding charge than 
obtained from the band structure calculations of 

Nielsen & Martin (1985). A more extensive study of 
the electron distribution based on measurements of 
further structure factors is in progress. 

In previous measurements of structure factors from 
CBED fringes (e.g. Goodman & Lehmpfuhl, 1967; 
Voss, Lehmpfuhl & Smith, 1980) photographic 
methods have been used. The present method, based 
upon detection through an energy loss spectrometer, 
has several advantages. The elimination of back- 
ground and the larger linear range available may be 
especially important for the weak reflections, where 
essentially an integrated intensity is measured, nor- 
malized to the strong reflection profile. The accuracy 
may be somewhat poorer than the best critical voltage 
measurement, but the present method has wider 
application and does not depend upon knowledge of 
other structure factors to the same extent. 

In the present study we have been concerned with 
refinement of a few structure factors for a known 
structure. In principle the calculation methods based 
upon Bethe potent ia ls-  or other approximations to 
U err- can be applied also to a row of reflections in 
an unknown structure, provided a two-Bloch-wave 
description is adequate as a first approximation. Even 
in cases where this does not hold for the inner reflec- 
tion, it may be possible to apply such a procedure to 
higher orders of the systematic row, since the two- 
Bloch-wave character becomes more pronounced and 
reflections better separated with increasing order. 
This is borne out by the calculations referred to in 
§ 3; note also the interpretation of high-order system- 
atics in purely kinematical terms reported by Taft0 
& Metzger (1985). 

In our study non-systematic reflections were intro- 
duced only as a correction, amounting to a few per- 
cent. No attempt was made to apply the procedures 
outlined in § 2 ab initio to reflections in a projection. 
However, such an extension appears feasible, pro- 
vided measurements can be made of intensity profiles 
associated with gaps at the dispersion surface. To the 
extent that experimental values of U err can be extrac- 
ted from such measurements, they can be treated by 
approximate expressions based either upon Bethe 
potentials or by the perturbation formulae given in 
§ 2 for scattering between rows in a zone. The latter 
procedure may be compared with the use of HOLZ 
reflections shown by Vincent, Bird & Steeds (1984). 

The representation of intensity features in terms of 
two-beam-like rocking curves with the 'gap' U elf as 
parameter appears to be a powerful way of treating 
CBED data. It should be mentioned that this involves 
a kind of high thickness approximation in terms of 
the strong beams present. When the gap is strongly 
influenced by multiple beam interactions the thick- 
ness must be large enough for these to develop. A 
treatment of this case as given by Gj0nnes (1962) 
may be incorporated in the procedure - or left to the 
final many-beam refinement. 
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APPENDIX 

Calculation procedure for obtaining Fourier potentials 
from intensity profiles in a systematic row 

The procedure is based upon fitting experimental 
profiles to the two-beam-type expression 

( I ]'eft) 2 

: l°(u,~f'~') +(ks,)" 2sin2([V2g+(ksg)2]'12z/k} 

(A1) 

where the symbols have their usual meaning (see § 2) 
with Ug rr as an effective structure factor. The thick- 
ness, effective structure factors and finally the struc- 
ture factors are to be determined from profiles of 
different thicknesses in terms of extinction length (see 
Fig. 8). As an example we give details of the model 
calculation referred to in § 3, i.e. the retrieval of 400, 
800 and 200 structure factors from calculated rocking 
c u r v e s .  

The thickness was determined from the 400 rocking 
curve by fitting the maxima and minima of I4oo which 

// ~ ' x  
/ ~ 

I II \\\ 

i / \ \  

a) 

/ 

/ / \ ' ,  

(b) 

Pi t. 8. Typical Kossel line profiles for (a) large and (b) small lap 
at the dispersion surface. 

are given by 

[(ks,)2+(Ugrf)2]z2=[(n/2)/zr] 2. (A2) 

If the zeros and maximas are numbered no+ i starting 
with the first zero and si are the corresponding excita- 
tion errors, the thickness and the gap can be found 
by a least-squares fit of the positions of the zeros and 
maxima to 

[(ksg)2+(U~grr)Z]z2=[(no+i)zr/2] 2. (A3) 

The calculations are performed in two steps: first the 
values of s, at minima and maxima of I, are obtained 
by fitting the I, values around these to parabolic 
expressions. Then we perform a least-squares fit to 
(A3), from which we obtain the thickness z and a 
preliminary value of U~ ft. 

Since this procedure strongly emphasizes the outer 
part of the rocking curve, it produces a very good 
value for z. Next the effective potential or gap (and 
also I0) must be determined from the part of the  curve 

exp ^ Ig (%) that falls between the first two zeros on 
either side of the Bragg condition. This is done by 
calculating 

[ / gheory (Si) _ lgXp(Si) ]2 (34)  
i 

and varying U~ rf within an interval U~Jr± AU~J f until 
the best fit between the experimental data and the 
theoretical intensity profile is obtained. For each 
value of U~ rf we use the following values for the 
thickness and Io: 

z = [(Ugrf) 2 + (ks'g)2]-'/2(no + 1 )/2; 

1g(s~ =o) 
Io - sin2 (O~rfz) (A5) 

where s~ is the first zero of l~XO(sg). 
Since 800 is also a strong reflection the same pro- 

cedure can be used to determine the corresponding 
gap, (Usoo) err. However, the very weak 200 reflection 
has a narrow intensity distribution near the Bragg 
condition, usually only one fringe. The method used 
in the case of the 400 and 800 reflections is therefore 
not well suited for determination of the 200 gap. 
Instead we use the integrated intensity of the 200 
reflection, i.e. the integral 

oo 
exp 

--ot~. 

In the two-beam case the integrated intensity can be 
transformed to an integral of the Bessel function of 
order zero (Blackman, 1939): 

A s 
7 /,(sg) dsg oc Ag ~ Jo(x) dx, (A6) 

--oo O 

where Ag = Ugz and the integral on the right can be 
calculated or found in tables. 
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The ratio between the integrated intensity of the 
200 reflection and the 400 reflection is then given by 

oo A2 

12oo(s2oo)ds2oo A2 ~ Jo(x) dx  
-- oo 0 

A 4 

/4oo(S4oo)ds4oo A4 I Jo(x)dx 
--oo 0 

(A7) 

where A2=(U200)errz and A4=(U400)errz. The 
integrals on the left can be determined from experi- 
mental intensity profiles, except for a constant which 
will not alter the ratio between the two. The integral 

A4 
A4 ~ Jo(x)dx 

0 

can be calculated from the known thickness and the 
400 gap. 

The 200 gap can now be determined from the 
computed value of the integral 

A 2 
A2 ~ Jo(x)dx. 

o 

This equation is solved by Newton's method, or some 
other iterative method, to give A2 = (U2oo)¢rrz. 

We use the Bethe formula 
uBethe s = U s - ~, UhUs_h/Eksh (A8) 

h~g 

for the effective Fourier potential (§ 2). A reversal of 
the Bethe formula will give approximate Fourier 
potentials or structure factors when the gaps are 
known. This is achieved by solving the following 
equations for the U~'s: 

U s = k ( T i - ' y J ) +  ~, U h U s _ h / E k s  h ( A 9 )  
h ¢ g  

where the sum includes reflections both inside the 
Ewald sphere (i.e. between 0 and g) and outside the 
Ewald sphere. Separating the reflections inside and 
outside the Ewald sphere and isolating the terms 
containing Us, we find 

Us(1 + U2s/2ks2s) 

= k ( ¢ -  ~/J)+2 ~ UhUg-h/2kSh 
h<g/2 

+ ( Ug/2)2/2kss/2 + 2 ~, UhUs-h/2kSh. 
h > g , h # 2 g  

(A10) 

These equations are then solved by iteration in the 
following way. First the gaps, k(yi - YJ)mi,, are sorted 
according to their magnitude. We take the largest gap 
as a first approximation to the corresponding Fourier 

potential. For the next strongest reflection, we only 
take into account the dominating terms in the sum 
over h, i.e. the ones that involve the strongest reflec- 
tion. All the reflections are treated in this way until 
approximations for all the Us's are obtained. 

Better approximations to the Ug's are now obtained 
by inserting the approximate values for the Uh'S in 
the equation. This process is repeated until the Us's 
converge, all the time using the new approximations 
to Uh'S as soon as they become available. In the 
examples studied, we found that the procedure con- 
verged whenever the reflections in a systematic row 
are well separated and the signs of the reflections are 
correct. 
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